Rogers–Ramanujan type identities and Nil-DAHA
نویسندگان
چکیده
منابع مشابه
Daha and Bispectral Quantum Kz Equations
We use the double affine Hecke algebra of type GLN to construct an explicit consistent system of q-difference equations, which we call the bispectral quantum Knizhnik-Zamolodchikov (BqKZ) equations. BqKZ includes, besides Cherednik’s quantum affine KZ equations associated to principal series representations of the underlying affine Hecke algebra, a compatible system of q-difference equations ac...
متن کاملNote on Dilogarithm Identities from Nilpotent Double Affine Hecke Algebras
Recently Cherednik and Feigin [arXiv:1209.1978] obtained several Rogers–Ramanujan type identities via the nilpotent double affine Hecke algebras (Nil-DAHA). These identities further led to a series of dilogarithm identities, some of which are known, while some are left conjectural. We confirm and explain all of them by showing the connection with Y -systems associated with (untwisted and twiste...
متن کاملthe investigation of the relationship between type a and type b personalities and quality of translation
چکیده ندارد.
Finite Rogers-Ramanujan Type Identities
Polynomial generalizations of all 130 of the identities in Slater’s list of identities of the Rogers-Ramanujan type are presented. Furthermore, duality relationships among many of the identities are derived. Some of the these polynomial identities were previously known but many are new. The author has implemented much of the finitization process in a Maple package which is available for free do...
متن کاملThe Abel-Type Polynomial Identities
The Abel identity is (x + y) = n ∑ i=0 ( n i ) x(x − iz)i−1(y + iz)n−i, where x, y and z are real numbers. In this paper we deduce several polynomials expansions, referred to as Abel-type identities, by using Foata’s method, and also show some of their applications.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2013
ISSN: 0001-8708
DOI: 10.1016/j.aim.2013.08.025