Rogers–Ramanujan type identities and Nil-DAHA

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Daha and Bispectral Quantum Kz Equations

We use the double affine Hecke algebra of type GLN to construct an explicit consistent system of q-difference equations, which we call the bispectral quantum Knizhnik-Zamolodchikov (BqKZ) equations. BqKZ includes, besides Cherednik’s quantum affine KZ equations associated to principal series representations of the underlying affine Hecke algebra, a compatible system of q-difference equations ac...

متن کامل

Note on Dilogarithm Identities from Nilpotent Double Affine Hecke Algebras

Recently Cherednik and Feigin [arXiv:1209.1978] obtained several Rogers–Ramanujan type identities via the nilpotent double affine Hecke algebras (Nil-DAHA). These identities further led to a series of dilogarithm identities, some of which are known, while some are left conjectural. We confirm and explain all of them by showing the connection with Y -systems associated with (untwisted and twiste...

متن کامل

Finite Rogers-Ramanujan Type Identities

Polynomial generalizations of all 130 of the identities in Slater’s list of identities of the Rogers-Ramanujan type are presented. Furthermore, duality relationships among many of the identities are derived. Some of the these polynomial identities were previously known but many are new. The author has implemented much of the finitization process in a Maple package which is available for free do...

متن کامل

The Abel-Type Polynomial Identities

The Abel identity is (x + y) = n ∑ i=0 ( n i ) x(x − iz)i−1(y + iz)n−i, where x, y and z are real numbers. In this paper we deduce several polynomials expansions, referred to as Abel-type identities, by using Foata’s method, and also show some of their applications.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2013

ISSN: 0001-8708

DOI: 10.1016/j.aim.2013.08.025